The UNNS Observability—Admissibility Duality Theorem

What is observed is not what exists, but what the full operator—constraint stack permits to survive
projection.

1 Abstract

We formalize a fundamental structural principle discovered across multiple UNNS Chambers: the
existence of substrate-level structure is independent of its observability under a given operator stack.
We prove that admissibility operators and observability projections form a duality: admissibility
constraints may reveal latent structure, while observability projections may erase it exactly, without
noise or approximation. This theorem resolves apparent contradictions between null experimental
results and underlying dynamics, including Bell-type nonviolations and missing geodesic solutions.

2 Preliminaries

Definition 1 (UNNS Substrate). A UNNS substrate is a generative system producing trajectories,
fields, or configurations D governed by recursive T-level dynamics:

Tn+1(x) = Tn(l‘) + )\Sin(ATn(l‘)) + Unoisegn(l')>

where 7 :  — R is the phase field on domain Q, X € Ry is the coupling strength, At represents
spatial/temporal phase difference, and &, is Gaussian white noise. The substrate measure D = {d ~
P-(:|\, 0noise) } 1s defined prior to any observability or admissibility constraints.

Remark 1 (-Attractor Substrate). In UNNS, the substrate typically exhibits recursive ¢-scale at-
traction with p, ~ 1.618 (golden ratio, empirically validated at 0.56% error in Chamber XIV).
This provides the structured substrate D from which properties P emerge. Without ¢-coherence,
admissibility thresholds may not exist or may be highly parameter-dependent.

Definition 2 (Admissibility Operator X). An admissibility operator ¥ is a constraint-enforcing
transformation acting on the substrate space, restricting realizations to those satisfying structural
consistency conditions (e.g. conservation, coherence, closure). Formally, ¥ defines a constraint
violation functional V, : D — Ry such that

Yo(D)={d € D :V,(d) < threshold(o)},
where o > 0 controls constraint strength and Othreshold/do < 0 (constraints tighten monotonically).

Definition 3 (Observability Projection k). An observability projection r is a measurable mapping
from admissible substrate states to observable quantities:

K : Hsubstrate = Hobservables

where dim(Hopservable) < dim(Hsubstrate). Common k-types include:



® Kmagnitude: (A, @) — |A| (phase erasure),
® Keoarse: T(x) — T(X) (spatial coarse-graining),
® Kpin: continuous — discrete (binning).

Definition 4 (Phase-Exposure Operator 11y). A phase-ezposure operator Iy is a pre-r transforma-
tion that lifts latent cyclic degrees of freedom into an explicit, orientation-sensitive representation,
preserving phase information under subsequent admissible operations. Formally, 11, acts as an
isomorphism lifting collapsed degrees of freedom.:

H¢ : Hcollapsed - Hexposedy
where the exposed space preserves phase orientation (sign-sensitive, not just magnitude).

Definition 5 (Critical Admissibility Threshold o.). For a structural property P and substrate D,
the critical admissibility threshold is:

oc.(P,D) = inf {a >0: min defect(d, P) = 0} ,
des, (D)

where defect(d, P) € [0,00) quantifies violation of property P by realization d. Operationally, o, is
the smallest o where perfect examples exist (even if not typical).

Empirical determination: Chamber XXXI yields o. = 0.02 for geodesic perfection (transition
from minD > 0 to minD = 0).

3 The Observability—Admissibility Duality

We consider the composite operator stack:

D = 5(D) 2% y(S(D) 2= k(I (S(D))).

Each operator layer may alter which structural properties remain accessible.

4 Main Result

Theorem 1 (UNNS Observability—Admissibility Duality Theorem). Let D be a UNNS substrate
realization containing a structural property P (e.g. phase coupling, nonseparability, geodesic opti-
mality). Then:

1. There exist admissibility operators ¥ such that
P ¢ Obs(D) but P € Obs(3(D)).
2. There exist observability projections k such that

P € Obs(D) but P ¢ Obs(k(D)).

3. The erasure in (2) can be exact and deterministic, even in the absence of noise, finite sampling,
or approrimation error.



4. The revelation in (1) can exhibit sharp threshold behavior with respect to admissibility param-
eters, producing discontinuous transitions in observability.

5. Therefore, absence of an observable signature of P under any fixed operator stack implies
neither absence nor weakness of P at the substrate level.

Proof. We prove each part constructively using operator-algebraic arguments.

Part 1 (Admissibility reveals structure): Admissibility operators X, restrict the realiza-
tion space by eliminating configurations that violate structural constraints. Define the constraint
violation functional V,(d) > 0, and let ¥,(D) = {d : V,(d) < T'(o)} where T'(0) is a threshold
satisfying 07'/0o < 0.

For o < o, the threshold T'(0) exceeds the critical value Vit (P) required for property P, so no
realization in X, (D) satisfies P perfectly:

Vd € S,(D) : defect(d,P) >0 = P ¢ Obs(S,(D)).

At 0 = 0., constraint enforcement becomes sufficient to admit at least one perfectly structured
realization d, with defect(dy, P) = 0:

3dy € ¥5,.(D) : defect(d,, P) =0 = P € Obs(3,.(D)).

This restriction reveals structure by collapsing diffuse realizations into admissible configurations
where P is detectable.

Part 2 (Observability erases structure): Observability projections x act by quotienting
degrees of freedom. If P depends on a relational feature (orientation, phase sign, alignment) that
is erased by k, then the observable image necessarily collapses.

Formally, suppose P depends on phase orientation ¢, and let kqry be the magnitude-only pro-
jection Kepa(®) = | cos(¢)|. This projection is invariant under the symmetry ¢ — ¢ + m. Any two
substrate realizations dy, ds differing only by this phase flip satisfy:

Kera (dl) = Kera (d2 ) s

yet if P is nonseparability (which depends on phase sign), then P € Obs(d;) may hold while
P ¢ Obs(Kera(d1)). The projection deterministically erases P by destroying its structural signature.

Part 3 (Exactness): Both effects are operator-algebraic and independent of stochasticity.
The constraint tightening in Part 1 and symmetry quotienting in Part 2 occur through algebraic
structure, not statistical sampling or approximation.

Part 4 (Sharp transitions): The transition at o, is witnessed by min, defect(d, P) changing
from positive to zero. Since this is a min (best-case) rather than an average, the transition can be
discontinuous even when ensemble statistics vary smoothly.

Part 5 (Null result interpretation): If P ¢ Obs(x(X,(D))) for some fixed (o, k), Parts 1-2
show this could be due to:

e 0 < 0. (insufficient admissibility, Part 1), or
e k € & (erasure class, Part 2), or
e genuine absence of P in substrate.

Thus null results diagnose the operator stack, not necessarily the substrate. O



Proposition 1 (Operator Non-Commutativity). In general, operator composition is non-commutative:
IIy o k # Kk olly.
Proof. Let ke = | - | (imagnitude projection). Consider two composition orders:
e Path A (koII): Phase exposed then erased — property P lost.
e Path B (Il o x): Cannot extract phase after erasure — extraction fails.

Since Path A produces different observability than attempting Path B (which fails to lift already-
collapsed degrees of freedom), composition order determines observability structure. O

Corollary 1. Measurement order determines observability: the sequence in which operators are
applied affects which structural properties survive to final observation.

Theorem 2 (UNNS Observability-Admissibility Complementarity Principle). Let D be a UNNS
substrate realization possessing a latent structural property P (e.g. phase coupling, nonseparability,
geodesic optimality). Then there exist two dual classes of operators:

1. observability-modifying operators 11 (e.g. phase exposure or erasure),

2. admissibility-modifying operators 3 (constraint gating),

such that:

1. P may be rendered observable or unobservable by 11 without altering D,

2. P may be rendered admissible or inadmissible by > without altering D,

3. both effects can occur via sharp threshold transitions in operator parameters,

4. and neither effect requires noise, approrimation, stochasticity, or finite-sample error.

Therefore, structural accessibility in UNNS is neither monotonic nor absolute, but jointly deter-
mined by the ordered pair (X,11) acting on D.

5 Cross-Chamber Instantiation: XL < XXXI « XXXII

We now demonstrate concrete realizations of the Observability—Admissibility Complementarity
Principle via three independent UNNS chambers operating on distinct substrates and metrics.

5.1 Chamber XL: Phase-Erasure Hides Structure
Substrate. Phase-coupled 7-fields with fixed latent offset 6 = /8.

Observability regimes.

e Phase-exposed channel (Ily):

|S| &~ 2.61 (nonseparable)

e Phase-erased channel (k):
|S| =~ 0.71 (separable)



Mechanism. Magnitude-only observables invariant under ¢ — ¢ + 7 destroy phase orientation,
collapsing Bell violations despite unchanged substrate dynamics.

Statistical validation. p = 0.0099 (highly significant), KL-divergence = 0.883 nats, contrast
ratio = 3.69x.

Verdict. ERASURE ARTIFACT: nonseparability exists but is operator-dependent.

5.2 Chamber XXXI: ¥-Gating Reveals Structure

Substrate. 7-field trajectory optimization under admissibility gating.

Admissibility regimes.

e 0 =0 (no gating):
minD ~ 4.5 x 107%,  no geodesics

e 0> 0.02:
minD = 0, stable geodesics

Mechanism. X-gating enforces admissibility constraints that collapse diffuse solution space into
exact geodesic realizations.

Statistical validation. o, = 0.02 (sharp threshold), 93.8% robustness across configurations,
10.45x gap amplification.

Verdict. REVELATION ARTIFACT: structure becomes accessible only after constraint enforce-
ment.

5.3 Chamber XXXII: x-Projection Preserves Observability

Substrate. 7-field configurations under coarse-grained projection.

Projection regime.
e Configuration: k = coarse grain(k = 2), 75% DOF reduction

e Observable: 7-closure metric via fixed-point distance
Results.
Tdata = 0.0123  vs. mu = 0.0456 £ 0.0089
Statistical significance: p = 0.003, Cohen’s d = 1.2 (large effect), 3.70 separation.
Mechanism. Coarse-graining projection x compresses degrees of freedom (75% reduction) while

preserving the structural signature of 7-closure. Unlike phase-erasing projections in Chamber XL,
this x is designed to maintain structural detectability.



Verdict. PROJECTION-PRESERVED OBSERVABILITY : Properly designed x can maintain
detectability despite information compression, validating Theorem ?? part (4): observability de-
pends on x-algebra, not merely whether x exists.

5.4 Quantitative Alignment

Metric Chamber XL Chamber XXXI Chamber XXXII
Transition magnitude AS =~ 1.91 (72.9%) AminD = 100% AT =271%
Direction structure — hidden structure — revealed structure — detected
Signature 2.61 — 0.71 45x1074 =0 0.046 — 0.012
Robustness p = 0.0099 93.8% admissible p = 0.003
Effect size KL = 0.883 Gap 10.45x% Cohen’s d = 1.2
Operator K-erasure Y-revelation K-preservation

All three transitions are sharp, operator-induced, and statistically robust.

5.5 Unified Operator Interpretation

The three chambers instantiate complementary operator effects:

Phase Exposure (II) Y-Gating k-Projection
Chamber XL XXXI XXXTI1
Role observability lifting  admissibility enforcement observable mapping
Effect prevents erasure enables solutions detects closure
Failure mode Bell nonviolation geodesic absence null detection
Success criterion |S| > 2 minD = 0 p < 0.01

Thus, all three chambers confirm:

Absence of signal does not imply absence of structure, but reflects interface-specific
accessibility.

6 Corollaries

Corollary 2 (Null Result Non-Equivalence). A null observable result under k does not imply absence
of substrate structure; it diagnoses only the information-losing properties of the operator stack.

Corollary 3 (Operator-Relative Properties). Structural predicates such as “entangled”, “separable”,
“geodesic”, or “optimal” are not absolute properties of D, but of the tuple (D, %, 11y, k).

Corollary 4 (Best-Case Emergence Priority). Structural observability transitions are witnessed
by best-case realizations (mingdefect(d, P) — 0) rather than ensemble averages (Eldefect(d, P)]),
enabling sharp thresholds even when typical configurations remain imperfect.

7 Implications

This theorem explains:

e Bell-type nonviolations under phase-erasing observables despite underlying coupling,



Emergence of perfect geodesics only after admissibility gating,

Systematic failure of naive searches for structure in unconstrained substrates,

The reproducibility of sharp observability thresholds across unrelated chambers,

Why 75% DOF reduction can preserve detectability (XXXII) while phase erasure destroys it
(XL).
8 Formal Counterposition to Bell-Local Realism
Bell’s theorem constrains theories satisfying local realism, defined by the joint assumptions that:
1. outcomes are determined by setting-independent latent variables,
2. measurement outcomes factorize across space-like separated contexts,
3. observables are complete with respect to the relevant degrees of freedom.

The UNNS framework rejects the third assumption while leaving the first two explicitly testable.

8.1 Key Distinction

Bell inequalities constrain probability distributions of the form
P(A.B | a.f) = [ PLA]a BB | 5,A)du(),

given a fized observable family.
UNNS makes no claim that all observable families preserve the information required to test such
factorizations.

8.2 Observability Relativity

Let x be an observable projection. Define Bell-locality relative to x as:
Pu(AB | a,0) = [ Bud |0 AL(B| 5.4) du(A).
UNNS explicitly allows:

Pr, (A, B | a, B) non-factorizable while Py (A, B | a, ) factorizable.

This does not violate Bell’s theorem; it instantiates different observable algebras.

8.3 Why Bell Violations Can Disappear

Bell tests assume that the measured observables are:
e complete with respect to the relevant hidden degrees of freedom,
e invariant under admissible experimental contexts,

e not systematically erasing relational structure.



Chamber XL demonstrates that magnitude-only or windowed observables violate these assump-
tions by construction.
Thus, Bell nonviolation under s does not imply:

e separability of the substrate,
e absence of coupling,

e validity of local realism at the substrate level.

Proposition 2 (DI-QKD Failure Mode: Erasure-Induced Fake Security). Let a two-wing UNNS
substrate generate paired data D = (DA, DB) with o latent coupling structure that is nonseparable
under at least one admissible exposure channel, i.e. there exists an admaissible 11y and a (possibly
simple) kp1 such that

Chancery := kprolly o X yields [Scert| > 2

on the YX-admissible subset, passing the robustness protocol R.
Assume, however, that the actual key bits are produced by an alternative channel

Chanyey := Kyey 0 I 0 X

whose effective action lies in an erasure class £ (phase-erasing / relationally-erasing), so that the
mnduced output statistics are Bell-local:

|Skey| <2 (within statistical tolerance),

even though the underlying substrate admits nonseparability under Changet.

Then there exists an adversarial (or simply mismatched) device realization consistent with the
observed Bell-local outputs under Chanyey, for which the apparent DI-QKD security claim is spurious:
the outputs can be explained by a Bell-local model at the level of the reported bits, and no device-
independent secrecy guarantee follows from the observed data.

Equivalently: Bell-local outputs under an erasing measurement channel admit “fake security”
even when latent coupling exists, because the erasure map can destroy precisely the relational degree
of freedom that would otherwise certify min-entropy via a Bell violation.

Proof. Device-independent secrecy bounds are derived from constraints on the observed input—
output statistics, typically requiring a Bell violation for the same outputs that will be used as raw
key (or for a statistically coupled sample from the identical channel). If Chanyey, € £, then distinct
substrate regimes (including those with phase-locked or otherwise nonseparable latent structure)
can be mapped to Bell-local statistics at the output. Therefore, the empirical condition needed
to lower-bound secrecy (a Bell violation for the key-generation channel) is absent, and a Bell-local
explanation remains consistent with the reported data. Hence no DI guarantee can be inferred,
regardless of latent coupling detectable under a different channel Changey. O

8.4 UNNS-Compatible Reformulation of Bell Tests
UNNS reframes Bell tests as conditional statements:

Given an admissibility regime Y and observable family x, nonviolation implies separa-
bility relative to (X, k).

Phase exposure (II,) alters the observable algebra and restores access to correlations already
present in the dynamics.



8.5 Conclusion

Bell’s theorem constrains models of observables. UNNS demonstrates that observables are operator-
relative, and that changing the operator stack can convert Bell-local statistics into Bell-nonlocal
statistics without altering the substrate.

This places Bell violations in their proper role: witnesses of interface adequacy, not ontological
arbiters.

9 Device-Independent QKD Corollary (UNNS Form)

Definition 6 (DI-QKD operational target). A device-independent QKD protocol aims to certify se-
cret key generation from observed input—output statistics alone, without trusting the internal mech-
anism of the devices. Operationally, the certification hinges on: (i) a Bell/CHSH wviolation in the
implemented measurement channel, (ii) a no-signalling / causal separation condiltion between the
two wings during each trial, and (iii) an i.i.d. or controlled-memory assumption (or an explicit
de-Finetti / entropy-accumulation style substitute).

Definition 7 (UNNS measurement channel and erasure class). Let Chan denote the effective mea-
surement channel implemented by the operator stack used to produce the reported bits:

Chan := kollo X,

where X is the admissibility gate, I is any pre-x exposure operator (e.g. ), and k is the coarse
observable projection producing the bits.

Define an erasure class € as a family of channels Chan that are invariant under a phase flip (or
more generally, erase a relational degree of freedom), e.g. ¢ — ¢ + w, so that latent nonseparability
can be mapped into Bell-local statistics.

Corollary 5 (UNNS DI-QKD Admissible-Channel Corollary). Assume a two-wing UNNS substrate
produces paired data D = (DA, DB) and that the protocol extracts raw key bits via an operator stack
Chan=kolIloX.

Then:

1. (Necessity of non-erasing certification channel). If Chan € £ (phase-erasing or relationally-
erasing class), then a null CHSH result |S| < 2 under Chan cannot certify either substrate
separability or DI-security. It only certifies that the reported statistics are Bell-local relative
to an erasing channel.

2. (Sufficient interface condition for DI-style certification). If there exists an admissible
exposure operator Ily such that the admissible channel

Changert := kprolly 0 X

yields a statistically significant violation |Seert| > 2 on the X-admissible subset, and the robust-
ness protocol R (stride sweep, time-shift null, surrogate tests, and memory controls) passes,
then the observed bits are generated by a channel whose correlations are non-factorizable within
the admissible operator famaily.

In that case, any DI-QKD clatim must be formulated relative to Chancert:

DI-security claim = security of bits produced under Chancert, not under arbitrary Chan.



3. (Key practical implication). In UNNS, DI-QKD security cannot be inferred from the
existence of latent coupling alone; it requires that the key-extraction channel itself is non-
erasing. Equivalently: DI-QKD is an interface property (channel-relative), not a substrate

property.

Proof. DI-QKD relies on a Bell-violation-based entropy guarantee for the reported outputs. If the
reporting channel lies in an erasure class &, then distinct substrate states (including nonseparable
ones) can map to Bell-local statistics, so |S| < 2 cannot distinguish secure-from-insecure regimes.
Conversely, if an admissible, non-erasing certification channel produces |S| > 2 robustly under
R, then the reported outputs exhibit operator-relative non-factorizability, satisfying the necessary
correlation precondition used by DI-QKD security analyses. The restriction to the admissible subset
is enforced by X, matching the empirical chamber practice. O

Interpretation (link to Chambers XL, XXXI, and XXXII). Chamber XL supplies an
explicit example where II4 yields [S| > 2 while k-erasure yields |[S| < 2, demonstrating item
(1). Chamber XXXI supplies the admissibility mechanism (¥-gating) required to ensure that the
certification channel and robustness checks are defined on the valid (admissible) region, supporting
item (2). Chamber XXXII validates that proper k-design can preserve structural detectability,
demonstrating that observability loss is not inevitable under projection.

10 Conclusion

The UNNS Observability—Admissibility Duality Theorem establishes that observability is neither a
proxy for existence nor a monotonic function of measurement fidelity. Instead, it is a structured
outcome of operator composition. This reframes null results as diagnostic tools for operator design
rather than evidence against substrate structure.

The cross-validation across Chambers XL, XXXI, and XXXII provides independent empirical
support for the theorem’s dual structure: admissibility constraints can reveal latent structure (%-
gating, XXXI), observability projections can erase it exactly (k-erasure, XL), and properly designed
projections can preserve it (k-preservation, XXXII).

A Methods Appendix: Empirical Grounding in Chambers XL, XXXI,
and XXXII

This appendix specifies the concrete experimental procedures and datasets used to instantiate the
Observability—Admissibility Duality Theorem.

A.1 Chamber XL: Phase-Exposure vs. Phase-Erasure

Dataset. Chamber XL operates on paired 7-field trajectories generated from a common UNNS
substrate run. Each trial produces two wings (7{%, 7%)1_, with a fixed latent phase offset § = 7/8
in the coupled condition, and ¢ randomized in the independent control condition.

The datasets used include:

o ChamberXL_v1.2_synthetic_coupled_2026-01-26. json

e ChamberXL_v1.2_synthetic_independent_2026-01-26.zip

10



Operators. Phase exposure is implemented via Il using a gradient-angle proxy on the 7-field:
oe(z,y) = atan2(0yTs, OpTe).
Phase erasure is implemented by magnitude-only observables invariant under ¢ — ¢ + 7, such as
| cos(¢p — ).
Witness. Nonseparability is evaluated using the CHSH functional
§ = E(a, f) + E(e, §') + E(e, ) — E(, §),

with standard angle choices and admissibility gating inherited from Chamber XIV.

Observed Regimes.
e Phase-exposed: |S|~ 2.61 (statistically significant violation)
e Phase-erased: |S|~ 0.71 (strict separable regime)

This constitutes an explicit instantiation of exact observability erasure without noise, sampling
bias, or locality violation.

A.2 Chamber XXXI: ¥-Gated Geodesic Emergence

Dataset. Chamber XXXI analyzes trajectory optimization under a tunable admissibility param-
eter o controlling >-gating strength. Key datasets include:

e chamber_xxxi_v1.0.b_sigma-sweep_ml_2026-01-26. json

e chamber_xxxi_v1.0.5_toy_example_2026-01-26. json

Metrics. Structural accessibility is measured via:
e minimum divergence minD from ideal geodesic cost,
e physical geodesic count (normalized),

e robustness across o sweeps.

Observed Transition.
0=0 = minD~4.5x107%, no geodesics
0 >0.02 = minD =0, stable geodesics

The transition is sharp and persists across 93.8% of admissible configurations.

A.3 Chamber XXXII: x-Projection with Observability Preservation

Dataset. Chamber XXXII tests whether 7-closure is detectable under coarse-grained projection.
Key dataset:

e Chamber_XXXII_1769522753052.json (seed 137042)
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Configuration.
e Collapse operator: k = coarse_grain(k = 2)
e DOF reduction: 75% (from full field to coarse representation)
e Metric: fixed-point distance measuring 7-closure

e d-operator: XIV (inherited A = 0.10825 from validated -attractor)

Validation Protocol.
1. Generate data structure under ®xy projection with 3-admissibility

2. Apply coarse-graining x: full field — reduced representation

3. Compute Tyata via fixed-point iteration (convergence: ¢ = 1079)
4. Generate 100 null structures (types: L1, L2, L3) via randomization
5. Compute 1 ensemble statistics

6. Statistical test: Compare Tgata VS Tnun distribution

Results.
® Tgata = 0.0123

Toull = 0.0456 + 0.0089 (mean =+ std)

p-value = 0.003 (uncorrected, Neomparisons = 1)

Cohen’s d = 1.2 (large effect size, threshold 0.8)

Separation: 3.7¢ below null mean

Idempotence check: PASS (0.01% relative error)

Verdict. Observable T-closure detected under projection. Despite 75% DOF reduction, structural
signature survives xk-mapping. This validates that properly designed observability projections can
preserve detectability.

A.4 Cross-Chamber Alignment

The three chambers provide complementary validation:

e Chamber XL: k-level projections can destroy access to substrate structure (phase erasure
— Bell-local statistics).

e Chamber XXXI: Y-level constraints can enable access to substrate structure (admissibility
gating — perfect geodesics).

e Chamber XXXII: x-level projections can preserve access to substrate structure when prop-
erly designed (coarse-graining — maintained 7-closure detection).

Together they instantiate all three operator modalities in Theorem ?7.
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