
The UNNS Observability�Admissibility Duality Theorem

What is observed is not what exists, but what the full operator�constraint stack permits to survive
projection.

1 Abstract

We formalize a fundamental structural principle discovered across multiple UNNS Chambers: the

existence of substrate-level structure is independent of its observability under a given operator stack.

We prove that admissibility operators and observability projections form a duality: admissibility

constraints may reveal latent structure, while observability projections may erase it exactly, without
noise or approximation. This theorem resolves apparent contradictions between null experimental

results and underlying dynamics, including Bell-type nonviolations and missing geodesic solutions.

2 Preliminaries

De�nition 1 (UNNS Substrate). A UNNS substrate is a generative system producing trajectories,
�elds, or con�gurations D governed by recursive τ -level dynamics:

τn+1(x) = τn(x) + λ sin(∆τn(x)) + σnoiseξn(x),

where τ : Ω → R is the phase �eld on domain Ω, λ ∈ R+ is the coupling strength, ∆τ represents
spatial/temporal phase di�erence, and ξn is Gaussian white noise. The substrate measure D = {d ∼
Pτ (·|λ, σnoise)} is de�ned prior to any observability or admissibility constraints.

Remark 1 (-Attractor Substrate). In UNNS, the substrate typically exhibits recursive ϕ-scale at-
traction with µ⋆ ≈ 1.618 (golden ratio, empirically validated at 0.56% error in Chamber XIV).
This provides the structured substrate D from which properties P emerge. Without ϕ-coherence,
admissibility thresholds may not exist or may be highly parameter-dependent.

De�nition 2 (Admissibility Operator Σ). An admissibility operator Σ is a constraint-enforcing
transformation acting on the substrate space, restricting realizations to those satisfying structural
consistency conditions (e.g. conservation, coherence, closure). Formally, Σ de�nes a constraint
violation functional Vσ : D → R+ such that

Σσ(D) = {d ∈ D : Vσ(d) ≤ threshold(σ)},

where σ ≥ 0 controls constraint strength and ∂threshold/∂σ < 0 (constraints tighten monotonically).

De�nition 3 (Observability Projection κ). An observability projection κ is a measurable mapping
from admissible substrate states to observable quantities:

κ : Hsubstrate → Hobservable,

where dim(Hobservable) ≤ dim(Hsubstrate). Common κ-types include:
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� κmagnitude: (A, ϕ) 7→ |A| (phase erasure),

� κcoarse: τ(x) 7→ τ̄(X) (spatial coarse-graining),

� κbin: continuous 7→ discrete (binning).

De�nition 4 (Phase-Exposure Operator Πϕ). A phase-exposure operator Πϕ is a pre-κ transforma-
tion that lifts latent cyclic degrees of freedom into an explicit, orientation-sensitive representation,
preserving phase information under subsequent admissible operations. Formally, Πϕ acts as an
isomorphism lifting collapsed degrees of freedom:

Πϕ : Hcollapsed → Hexposed,

where the exposed space preserves phase orientation (sign-sensitive, not just magnitude).

De�nition 5 (Critical Admissibility Threshold σc). For a structural property P and substrate D,
the critical admissibility threshold is:

σc(P,D) := inf

{
σ ≥ 0 : min

d∈Σσ(D)
defect(d, P ) = 0

}
,

where defect(d, P ) ∈ [0,∞) quanti�es violation of property P by realization d. Operationally, σc is
the smallest σ where perfect examples exist (even if not typical).

Empirical determination: Chamber XXXI yields σc = 0.02 for geodesic perfection (transition
from minD > 0 to minD = 0).

3 The Observability�Admissibility Duality

We consider the composite operator stack:

D
Σ−−→ Σ(D)

Πϕ−−→ Πϕ(Σ(D))
κ−→ κ(Πϕ(Σ(D))).

Each operator layer may alter which structural properties remain accessible.

4 Main Result

Theorem 1 (UNNS Observability�Admissibility Duality Theorem). Let D be a UNNS substrate
realization containing a structural property P (e.g. phase coupling, nonseparability, geodesic opti-
mality). Then:

1. There exist admissibility operators Σ such that

P /∈ Obs(D) but P ∈ Obs(Σ(D)).

2. There exist observability projections κ such that

P ∈ Obs(D) but P /∈ Obs(κ(D)).

3. The erasure in (2) can be exact and deterministic, even in the absence of noise, �nite sampling,
or approximation error.
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4. The revelation in (1) can exhibit sharp threshold behavior with respect to admissibility param-
eters, producing discontinuous transitions in observability.

5. Therefore, absence of an observable signature of P under any �xed operator stack implies
neither absence nor weakness of P at the substrate level.

Proof. We prove each part constructively using operator-algebraic arguments.

Part 1 (Admissibility reveals structure): Admissibility operators Σσ restrict the realiza-

tion space by eliminating con�gurations that violate structural constraints. De�ne the constraint

violation functional Vσ(d) ≥ 0, and let Σσ(D) = {d : Vσ(d) ≤ T (σ)} where T (σ) is a threshold

satisfying ∂T/∂σ < 0.
For σ < σc, the threshold T (σ) exceeds the critical value Vcrit(P ) required for property P , so no

realization in Σσ(D) satis�es P perfectly:

∀d ∈ Σσ(D) : defect(d, P ) > 0 ⇒ P /∈ Obs(Σσ(D)).

At σ = σc, constraint enforcement becomes su�cient to admit at least one perfectly structured

realization d⋆ with defect(d⋆, P ) = 0:

∃d⋆ ∈ Σσc(D) : defect(d⋆, P ) = 0 ⇒ P ∈ Obs(Σσc(D)).

This restriction reveals structure by collapsing di�use realizations into admissible con�gurations
where P is detectable.

Part 2 (Observability erases structure): Observability projections κ act by quotienting

degrees of freedom. If P depends on a relational feature (orientation, phase sign, alignment) that

is erased by κ, then the observable image necessarily collapses.

Formally, suppose P depends on phase orientation ϕ, and let κera be the magnitude-only pro-

jection κera(ϕ) = | cos(ϕ)|. This projection is invariant under the symmetry ϕ 7→ ϕ + π. Any two

substrate realizations d1, d2 di�ering only by this phase �ip satisfy:

κera(d1) = κera(d2),

yet if P is nonseparability (which depends on phase sign), then P ∈ Obs(d1) may hold while

P /∈ Obs(κera(d1)). The projection deterministically erases P by destroying its structural signature.

Part 3 (Exactness): Both e�ects are operator-algebraic and independent of stochasticity.

The constraint tightening in Part 1 and symmetry quotienting in Part 2 occur through algebraic

structure, not statistical sampling or approximation.

Part 4 (Sharp transitions): The transition at σc is witnessed by mind defect(d, P ) changing
from positive to zero. Since this is a min (best-case) rather than an average, the transition can be

discontinuous even when ensemble statistics vary smoothly.

Part 5 (Null result interpretation): If P /∈ Obs(κ(Σσ(D))) for some �xed (σ, κ), Parts 1-2
show this could be due to:

� σ < σc (insu�cient admissibility, Part 1), or

� κ ∈ E (erasure class, Part 2), or

� genuine absence of P in substrate.

Thus null results diagnose the operator stack, not necessarily the substrate.
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Proposition 1 (Operator Non-Commutativity). In general, operator composition is non-commutative:

Πϕ ◦ κ ̸= κ ◦Πϕ.

Proof. Let κera = | · | (magnitude projection). Consider two composition orders:

� Path A (κ ◦Π): Phase exposed then erased � property P lost.

� Path B (Π ◦ κ): Cannot extract phase after erasure � extraction fails.

Since Path A produces di�erent observability than attempting Path B (which fails to lift already-

collapsed degrees of freedom), composition order determines observability structure.

Corollary 1. Measurement order determines observability: the sequence in which operators are
applied a�ects which structural properties survive to �nal observation.

Theorem 2 (UNNS Observability�Admissibility Complementarity Principle). Let D be a UNNS
substrate realization possessing a latent structural property P (e.g. phase coupling, nonseparability,
geodesic optimality). Then there exist two dual classes of operators:

1. observability-modifying operators Π (e.g. phase exposure or erasure),

2. admissibility-modifying operators Σ (constraint gating),

such that:

1. P may be rendered observable or unobservable by Π without altering D,

2. P may be rendered admissible or inadmissible by Σ without altering D,

3. both e�ects can occur via sharp threshold transitions in operator parameters,

4. and neither e�ect requires noise, approximation, stochasticity, or �nite-sample error.

Therefore, structural accessibility in UNNS is neither monotonic nor absolute, but jointly deter-
mined by the ordered pair (Σ,Π) acting on D.

5 Cross-Chamber Instantiation: XL ↔ XXXI ↔ XXXII

We now demonstrate concrete realizations of the Observability�Admissibility Complementarity

Principle via three independent UNNS chambers operating on distinct substrates and metrics.

5.1 Chamber XL: Phase-Erasure Hides Structure

Substrate. Phase-coupled τ -�elds with �xed latent o�set δ = π/8.

Observability regimes.

� Phase-exposed channel (Πϕ):

|S| ≈ 2.61 (nonseparable)

� Phase-erased channel (κ):
|S| ≈ 0.71 (separable)
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Mechanism. Magnitude-only observables invariant under ϕ 7→ ϕ + π destroy phase orientation,

collapsing Bell violations despite unchanged substrate dynamics.

Statistical validation. p = 0.0099 (highly signi�cant), KL-divergence = 0.883 nats, contrast

ratio = 3.69×.

Verdict. ERASURE ARTIFACT : nonseparability exists but is operator-dependent.

5.2 Chamber XXXI: Σ-Gating Reveals Structure

Substrate. τ -�eld trajectory optimization under admissibility gating.

Admissibility regimes.

� σ = 0 (no gating):

minD ≈ 4.5× 10−4, no geodesics

� σ ≥ 0.02:
minD = 0, stable geodesics

Mechanism. Σ-gating enforces admissibility constraints that collapse di�use solution space into

exact geodesic realizations.

Statistical validation. σc = 0.02 (sharp threshold), 93.8% robustness across con�gurations,

10.45× gap ampli�cation.

Verdict. REVELATION ARTIFACT : structure becomes accessible only after constraint enforce-

ment.

5.3 Chamber XXXII: κ-Projection Preserves Observability

Substrate. τ -�eld con�gurations under coarse-grained projection.

Projection regime.

� Con�guration: κ = coarse_grain(k = 2), 75% DOF reduction

� Observable: τ -closure metric via �xed-point distance

Results.

τdata = 0.0123 vs. τnull = 0.0456± 0.0089

Statistical signi�cance: p = 0.003, Cohen's d = 1.2 (large e�ect), 3.7σ separation.

Mechanism. Coarse-graining projection κ compresses degrees of freedom (75% reduction) while

preserving the structural signature of τ -closure. Unlike phase-erasing projections in Chamber XL,

this κ is designed to maintain structural detectability.
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Verdict. PROJECTION-PRESERVED OBSERVABILITY : Properly designed κ can maintain

detectability despite information compression, validating Theorem ?? part (4): observability de-

pends on κ-algebra, not merely whether κ exists.

5.4 Quantitative Alignment

Metric Chamber XL Chamber XXXI Chamber XXXII

Transition magnitude ∆S ≈ 1.91 (72.9%) ∆minD = 100% ∆τ = 271%
Direction structure → hidden structure → revealed structure → detected

Signature 2.61 → 0.71 4.5× 10−4 → 0 0.046 → 0.012
Robustness p = 0.0099 93.8% admissible p = 0.003
E�ect size KL = 0.883 Gap 10.45× Cohen's d = 1.2
Operator κ-erasure Σ-revelation κ-preservation

All three transitions are sharp, operator-induced, and statistically robust.

5.5 Uni�ed Operator Interpretation

The three chambers instantiate complementary operator e�ects:

Phase Exposure (Πϕ) Σ-Gating κ-Projection

Chamber XL XXXI XXXII

Role observability lifting admissibility enforcement observable mapping

E�ect prevents erasure enables solutions detects closure

Failure mode Bell nonviolation geodesic absence null detection

Success criterion |S| > 2 minD = 0 p < 0.01

Thus, all three chambers con�rm:

Absence of signal does not imply absence of structure, but re�ects interface-speci�c

accessibility.

6 Corollaries

Corollary 2 (Null Result Non-Equivalence). A null observable result under κ does not imply absence
of substrate structure; it diagnoses only the information-losing properties of the operator stack.

Corollary 3 (Operator-Relative Properties). Structural predicates such as �entangled�, �separable�,
�geodesic�, or �optimal� are not absolute properties of D, but of the tuple (D,Σ,Πϕ, κ).

Corollary 4 (Best-Case Emergence Priority). Structural observability transitions are witnessed
by best-case realizations (mind defect(d, P ) → 0) rather than ensemble averages (E[defect(d, P )]),
enabling sharp thresholds even when typical con�gurations remain imperfect.

7 Implications

This theorem explains:

� Bell-type nonviolations under phase-erasing observables despite underlying coupling,
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� Emergence of perfect geodesics only after admissibility gating,

� Systematic failure of naive searches for structure in unconstrained substrates,

� The reproducibility of sharp observability thresholds across unrelated chambers,

� Why 75% DOF reduction can preserve detectability (XXXII) while phase erasure destroys it

(XL).

8 Formal Counterposition to Bell�Local Realism

Bell's theorem constrains theories satisfying local realism, de�ned by the joint assumptions that:

1. outcomes are determined by setting-independent latent variables,

2. measurement outcomes factorize across space-like separated contexts,

3. observables are complete with respect to the relevant degrees of freedom.

The UNNS framework rejects the third assumption while leaving the �rst two explicitly testable.

8.1 Key Distinction

Bell inequalities constrain probability distributions of the form

P(A,B | α, β) =
∫

P(A | α,Λ)P(B | β,Λ) dµ(Λ),

given a �xed observable family.
UNNS makes no claim that all observable families preserve the information required to test such

factorizations.

8.2 Observability Relativity

Let κ be an observable projection. De�ne Bell-locality relative to κ as:

Pκ(A,B | α, β) =
∫

Pκ(A | α,Λ)Pκ(B | β,Λ) dµ(Λ).

UNNS explicitly allows:

PΠϕ
(A,B | α, β) non-factorizable while Pκ(A,B | α, β) factorizable.

This does not violate Bell's theorem; it instantiates di�erent observable algebras.

8.3 Why Bell Violations Can Disappear

Bell tests assume that the measured observables are:

� complete with respect to the relevant hidden degrees of freedom,

� invariant under admissible experimental contexts,

� not systematically erasing relational structure.
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Chamber XL demonstrates that magnitude-only or windowed observables violate these assump-

tions by construction.

Thus, Bell nonviolation under κ does not imply:

� separability of the substrate,

� absence of coupling,

� validity of local realism at the substrate level.

Proposition 2 (DI-QKD Failure Mode: Erasure-Induced Fake Security). Let a two-wing UNNS
substrate generate paired data D = (DA, DB) with a latent coupling structure that is nonseparable

under at least one admissible exposure channel, i.e. there exists an admissible Πϕ and a (possibly
simple) κDI such that

Chancert := κDI ◦Πϕ ◦ Σ yields |Scert| > 2

on the Σ-admissible subset, passing the robustness protocol R.
Assume, however, that the actual key bits are produced by an alternative channel

Chankey := κkey ◦Π ◦ Σ

whose e�ective action lies in an erasure class E (phase-erasing / relationally-erasing), so that the
induced output statistics are Bell-local:

|Skey| ≤ 2 (within statistical tolerance),

even though the underlying substrate admits nonseparability under Chancert.
Then there exists an adversarial (or simply mismatched) device realization consistent with the

observed Bell-local outputs under Chankey for which the apparent DI-QKD security claim is spurious:
the outputs can be explained by a Bell-local model at the level of the reported bits, and no device-
independent secrecy guarantee follows from the observed data.

Equivalently: Bell-local outputs under an erasing measurement channel admit �fake security�

even when latent coupling exists, because the erasure map can destroy precisely the relational degree
of freedom that would otherwise certify min-entropy via a Bell violation.

Proof. Device-independent secrecy bounds are derived from constraints on the observed input�

output statistics, typically requiring a Bell violation for the same outputs that will be used as raw

key (or for a statistically coupled sample from the identical channel). If Chankey ∈ E , then distinct

substrate regimes (including those with phase-locked or otherwise nonseparable latent structure)

can be mapped to Bell-local statistics at the output. Therefore, the empirical condition needed

to lower-bound secrecy (a Bell violation for the key-generation channel) is absent, and a Bell-local

explanation remains consistent with the reported data. Hence no DI guarantee can be inferred,

regardless of latent coupling detectable under a di�erent channel Chancert.

8.4 UNNS-Compatible Reformulation of Bell Tests

UNNS reframes Bell tests as conditional statements:

Given an admissibility regime Σ and observable family κ, nonviolation implies separa-

bility relative to (Σ, κ).

Phase exposure (Πϕ) alters the observable algebra and restores access to correlations already

present in the dynamics.
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8.5 Conclusion

Bell's theorem constrains models of observables. UNNS demonstrates that observables are operator-
relative, and that changing the operator stack can convert Bell-local statistics into Bell-nonlocal

statistics without altering the substrate.

This places Bell violations in their proper role: witnesses of interface adequacy, not ontological
arbiters.

9 Device-Independent QKD Corollary (UNNS Form)

De�nition 6 (DI-QKD operational target). A device-independent QKD protocol aims to certify se-
cret key generation from observed input�output statistics alone, without trusting the internal mech-
anism of the devices. Operationally, the certi�cation hinges on: (i) a Bell/CHSH violation in the
implemented measurement channel, (ii) a no-signalling / causal separation condition between the
two wings during each trial, and (iii) an i.i.d. or controlled-memory assumption (or an explicit
de-Finetti / entropy-accumulation style substitute).

De�nition 7 (UNNS measurement channel and erasure class). Let Chan denote the e�ective mea-
surement channel implemented by the operator stack used to produce the reported bits:

Chan := κ ◦Π ◦ Σ,

where Σ is the admissibility gate, Π is any pre-κ exposure operator (e.g. Πϕ), and κ is the coarse
observable projection producing the bits.

De�ne an erasure class E as a family of channels Chan that are invariant under a phase �ip (or
more generally, erase a relational degree of freedom), e.g. ϕ 7→ ϕ+ π, so that latent nonseparability
can be mapped into Bell-local statistics.

Corollary 5 (UNNS DI-QKD Admissible-Channel Corollary). Assume a two-wing UNNS substrate
produces paired data D = (DA, DB) and that the protocol extracts raw key bits via an operator stack
Chan = κ ◦Π ◦ Σ.

Then:

1. (Necessity of non-erasing certi�cation channel). If Chan ∈ E (phase-erasing or relationally-
erasing class), then a null CHSH result |S| ≤ 2 under Chan cannot certify either substrate
separability or DI-security. It only certi�es that the reported statistics are Bell-local relative
to an erasing channel.

2. (Su�cient interface condition for DI-style certi�cation). If there exists an admissible
exposure operator Πϕ such that the admissible channel

Chancert := κDI ◦Πϕ ◦ Σ

yields a statistically signi�cant violation |Scert| > 2 on the Σ-admissible subset, and the robust-
ness protocol R (stride sweep, time-shift null, surrogate tests, and memory controls) passes,
then the observed bits are generated by a channel whose correlations are non-factorizable within
the admissible operator family.

In that case, any DI-QKD claim must be formulated relative to Chancert:

DI-security claim ⇒ security of bits produced under Chancert, not under arbitrary Chan.
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3. (Key practical implication). In UNNS, DI-QKD security cannot be inferred from the
existence of latent coupling alone; it requires that the key-extraction channel itself is non-
erasing. Equivalently: DI-QKD is an interface property (channel-relative), not a substrate
property.

Proof. DI-QKD relies on a Bell-violation-based entropy guarantee for the reported outputs. If the

reporting channel lies in an erasure class E , then distinct substrate states (including nonseparable

ones) can map to Bell-local statistics, so |S| ≤ 2 cannot distinguish secure-from-insecure regimes.

Conversely, if an admissible, non-erasing certi�cation channel produces |S| > 2 robustly under

R, then the reported outputs exhibit operator-relative non-factorizability, satisfying the necessary

correlation precondition used by DI-QKD security analyses. The restriction to the admissible subset

is enforced by Σ, matching the empirical chamber practice.

Interpretation (link to Chambers XL, XXXI, and XXXII). Chamber XL supplies an

explicit example where Πϕ yields |S| > 2 while κ-erasure yields |S| ≤ 2, demonstrating item

(1). Chamber XXXI supplies the admissibility mechanism (Σ-gating) required to ensure that the

certi�cation channel and robustness checks are de�ned on the valid (admissible) region, supporting

item (2). Chamber XXXII validates that proper κ-design can preserve structural detectability,

demonstrating that observability loss is not inevitable under projection.

10 Conclusion

The UNNS Observability�Admissibility Duality Theorem establishes that observability is neither a

proxy for existence nor a monotonic function of measurement �delity. Instead, it is a structured

outcome of operator composition. This reframes null results as diagnostic tools for operator design

rather than evidence against substrate structure.

The cross-validation across Chambers XL, XXXI, and XXXII provides independent empirical

support for the theorem's dual structure: admissibility constraints can reveal latent structure (Σ-
gating, XXXI), observability projections can erase it exactly (κ-erasure, XL), and properly designed
projections can preserve it (κ-preservation, XXXII).

A Methods Appendix: Empirical Grounding in Chambers XL, XXXI,
and XXXII

This appendix speci�es the concrete experimental procedures and datasets used to instantiate the

Observability�Admissibility Duality Theorem.

A.1 Chamber XL: Phase-Exposure vs. Phase-Erasure

Dataset. Chamber XL operates on paired τ -�eld trajectories generated from a common UNNS

substrate run. Each trial produces two wings (τAt , τBt )Tt=0 with a �xed latent phase o�set δ = π/8
in the coupled condition, and δ randomized in the independent control condition.

The datasets used include:

� ChamberXL_v1.2_synthetic_coupled_2026-01-26.json

� ChamberXL_v1.2_synthetic_independent_2026-01-26.zip
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Operators. Phase exposure is implemented via Πϕ using a gradient-angle proxy on the τ -�eld:

ϕt(x, y) := atan2(∂yτt, ∂xτt).

Phase erasure is implemented by magnitude-only observables invariant under ϕ 7→ ϕ + π, such as

| cos(ϕ− θ)|.

Witness. Nonseparability is evaluated using the CHSH functional

S = E(α, β) + E(α, β′) + E(α′, β)− E(α′, β′),

with standard angle choices and admissibility gating inherited from Chamber XIV.

Observed Regimes.

� Phase-exposed: |S| ≈ 2.61 (statistically signi�cant violation)

� Phase-erased: |S| ≈ 0.71 (strict separable regime)

This constitutes an explicit instantiation of exact observability erasure without noise, sampling

bias, or locality violation.

A.2 Chamber XXXI: Σ-Gated Geodesic Emergence

Dataset. Chamber XXXI analyzes trajectory optimization under a tunable admissibility param-

eter σ controlling Σ-gating strength. Key datasets include:

� chamber_xxxi_v1.0.5_sigma-sweep_m1_2026-01-26.json

� chamber_xxxi_v1.0.5_toy_example_2026-01-26.json

Metrics. Structural accessibility is measured via:

� minimum divergence minD from ideal geodesic cost,

� physical geodesic count (normalized),

� robustness across σ sweeps.

Observed Transition.

σ = 0 ⇒ minD ≈ 4.5× 10−4, no geodesics

σ ≥ 0.02 ⇒ minD = 0, stable geodesics

The transition is sharp and persists across 93.8% of admissible con�gurations.

A.3 Chamber XXXII: κ-Projection with Observability Preservation

Dataset. Chamber XXXII tests whether τ -closure is detectable under coarse-grained projection.

Key dataset:

� Chamber_XXXII_1769522753052.json (seed 137042)

11



Con�guration.

� Collapse operator: κ = coarse_grain(k = 2)

� DOF reduction: 75% (from full �eld to coarse representation)

� Metric: �xed-point distance measuring τ -closure

� Φ-operator: XIV (inherited λ = 0.10825 from validated -attractor)

Validation Protocol.

1. Generate data structure under ΦXIV projection with Σ-admissibility

2. Apply coarse-graining κ: full �eld → reduced representation

3. Compute τdata via �xed-point iteration (convergence: ϵ = 10−6)

4. Generate 100 null structures (types: L1, L2, L3) via randomization

5. Compute τnull ensemble statistics

6. Statistical test: Compare τdata vs τnull distribution

Results.

� τdata = 0.0123

� τnull = 0.0456± 0.0089 (mean ± std)

� p-value = 0.003 (uncorrected, Ncomparisons = 1)

� Cohen's d = 1.2 (large e�ect size, threshold 0.8)

� Separation: 3.7σ below null mean

� Idempotence check: PASS (0.01% relative error)

Verdict. Observable τ -closure detected under projection. Despite 75% DOF reduction, structural

signature survives κ-mapping. This validates that properly designed observability projections can

preserve detectability.

A.4 Cross-Chamber Alignment

The three chambers provide complementary validation:

� Chamber XL: κ-level projections can destroy access to substrate structure (phase erasure

→ Bell-local statistics).

� Chamber XXXI: Σ-level constraints can enable access to substrate structure (admissibility

gating → perfect geodesics).

� Chamber XXXII: κ-level projections can preserve access to substrate structure when prop-

erly designed (coarse-graining → maintained τ -closure detection).

Together they instantiate all three operator modalities in Theorem ??.
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